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Abstract

WAHLS, RICHARD A. Development of a Defect Stream Function, Law of the

Wall/Wake Method for Compressible Turbulent Boundary Layers (Under the direction of

Dr. Fred R. DeJamette)

The method presented is designed to improve the accuracy and computational

efficiency of existing numerical methods for the solution of flows with compressible

turbulent boundary layers. A compressible defect stream function formulation of the

governing equations assuming an arbitrary turbulence model is derived. This formulation

is advantageous because it has a constrained zero-order approximation with respect to the

wall shear stress and the tangential momentum equation has a first integral. Previous

problems with this type of formulation near the wall are eliminated by using empirically

based analytic expressions to define the flow near the wall. The van Driest law of the wall

for velocity and the modified Crocco temperature-velocity relationship are used. The

associated compressible law of the wake is determined and it extends the valid range of the

analytic expressions beyond the logarithmic region of the boundary layer. The need for an

inner-region eddy viscosity model is completely avoided. The near-wall analytic

expressions are patched to numerically computed outer region solutions at a point

determined during the computation. A new boundary condition on the normal derivative of

the tangential velocity at the surface is presented; this condition replaces the no-slip

condition and enables numerical integration to the surface with a relatively coarse grid using

only an outer region turbulence model. The method has been evaluated for incompressible

and compressible equilibrium flows and has been implemented into an existing Navier-

Stokes code using the assumption of local equilibrium flow with respect to the patching.

The method has proven to be accurate and efficient.
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1 INTRODUCTION

It is generally accepted that turbulence is the most complicated kind of fluid motion.

Many researchers have directed extensive effort towards the physical understanding and

computation of turbulent flows. Turbulence has been described by Hinze 1 as "...an

irregular condition of flow in Which the various quantities show a random variation with

time and space coordinates so that statistically distinct average values can be discerned."

The major problem when attempting to compute a turbulent flowfield from first principles

is that the time and space scales of the turbulent motion are extremely small. The

computational grid required to fully resolve such a flow in this manner are beyond the

limits of todays computer technology. Anderson et al 2 provide an estimate of the spacing

required for a typical flowfield in which "10 5 points may be required to resolve just 1 cm 3

of the flowfield." It is because "statistically distinct average values can be discerned" that

modeling techniques can be developed that allow us to solve turbulent flowfields for

engineering purposes.

Currently there are two basic approaches for computing turbulent flowfields 3. The

first approach is known as a large eddy simulation. This approach attempts to compute the

maximum amount of information about the turbulent motion as it attempts to capture the

turbulence on a real-time, real-space basis. Large eddies, which are responsible for the

majority of the momentum transport, are resolved on the scale of the grid. Subgrid

modeling is used to describe the effects of the small eddies, which cannot be resolved with

practical grids. It has been projected 3 that fully converged large eddy simulations for

simple airfoils is beyond the capability of current computers.

The second, and more prevalent, approach is to calculate the mean motion of the

fluid by use of the time-averaged Navier-Stokes equations. These equations are often

referred to as the Reynolds equations. They are derived by decomposing the dependent



variablesintomeanandfluctuatingcomponentsandthenaveragingtheequationsovertime.

Theresultingequationsareexpressedprimarily in termsof meanvariableswith the

transienteffectsof turbulencebeingdescribedby thefluctuatingquantitiesthatappearin the

turbulentor Reynoldsstressterms;theReynoldsstresstermsrequiremodeling. This

approachdoesnotattemptto capturetheturbulenceonareal-time,real-spacebasisbut

insteadreliesona turbulencemodeltoconveytheeffectsof theturbulentmotionon the

meanflow. Also, the solution schemes do not need to be time accurate and are able to

converge much more rapidly than with large eddy simulations. On the other hand,

information on the dynamics of turbulence is lost. It is fortunate that the simpler statistical

• . 4
approach is adequate for general engmeenng purposes .

Turbulence modeling is the most important and most difficult aspect of the statistical

methods. The turbulence model is necessary to mathematically close the system of

governing equations and must fully describe all of the effects of the turbulent motion on the

mean flow. Several excellent review papers on the state of turbulence modeling have been

given by Rubesin 3, Lakshminarayana 5, Marvin 6, and Rubesin and Viegas 7. Turbulence

models can be categorized as either zonal or global in reference to their range validity 3. The

zonal model is one which is designed for a specific application and is usually developed

from this specific class of experiments. In general, these models do an excellent job of

predicting flows of the particular class but begin to lose accuracy and break down when

extending beyond these flows. The global models, however, involve more complex

functions, such as the field equations for the turbulence quantities, and have a wider range

of applicability. The more complex models require more empirically based coefficients

than do the zonal models; these coefficients are determined from more than one class of

experiments. The basic necessity of empirical coefficients restricts the global models from

successfully predicting flows of all types. At present, a true global, or universal, model

2



which is accurate for all flows has yet to be determined. Thus, it can be stated that current

turbulence models are restricted to various zones of application.

Turbulence models can also be classified as either eddy-viscosity or stress-transport

models 6. Eddy-viscosity models rely on the Boussinesq 8 concept, which models the

turbulent shear stress as the product of an effective viscosity and a mean rate of strain. The

effective viscosity is proportional to the velocity and length scales of the turbulence in the

various regions of the flow. Eddy-viscosity models can be further classified according to

the method of determining the effective viscosity; in other words, the various eddy-

viscosity models are functions of the method used to describe the velocity and length scales

of turbulence. They are classified as either zero-, one-, or two-equation models, where the

designation refers to number of field equations used in addition to the usual mean flow

equations. The simplest is, of course, the zero-equation model, which determines the eddy

viscosity based entirely on the properties of the mean flow. The two primary examples of

this type are those of Cebeci and Smith 9 and Baldwin and Lomax 10. These models are

widely used in practical engineering applications for simple shear flows and in many

Navier-Stokes codes 5. The one-equation models typically rely on the solution of the

turbulent kinetic energy equation to represent the velocity scale, and the two-equation

models incorporate the solution of an additional equation which represents the length scale

of the problem. The one- and two-equation models are more general than the zero-equation

models but, in many instances, do not improve the accuracy of the solutions.

The stress-transport models use the Reynolds-stress equations to model turbulence

in the mean flow equations. Here closure is achieved through the solution of the mean

turbulent field and requires the solution of up to six additional differential equations for the

Reynolds stresses, thus significantly increasing the computational effort required beyond

the capability of current computers 5. As a result, several attempts to simplify the stress-

transport equations have been made and are discussed in detail in reference 5. These



approachesmakeassumptions,somearbitraryandothersbasedon thephysicsof theflow,

thatallow thestress-transportequationsto bereducedto analgebraicform. Notethateven

in differentialform,theseequationsstill requiremodelingof severaltermswhich involvea

numberof empiricalcoefficients.Themainadvantagerelativeto eddy-viscositymodelsis

thatthestressesareableto respondimmediatelyto changesin therateof strain.These

modelsareappropriatefor awiderrangeof flow conditionsincludingseparatedand

recirculationregionsfor whicheddy-viscositymodelsarenotvalid.

Thecurrentinvestigationisconcernedwith thesolutionof compressibleturbulent

boundarylayersoversolidsurfaces.Theflowfieldsstudiedarerestrictedto attached

boundarylayersunderadiabaticwall conditions.Theformulationis derivedsuchthatit is

consistentwith theeddy-viscosityconcept.Overtheyears,considerableresearchhasbeen

devotedto thedevelopmentof numericalmethodsforjust suchsituations.The

computationaleffort requiredof thesemethodsis highlydependenton thenumberof grid

pointsnecessaryto accuratelyresolvetheflowfield. Boundary-layerflows in general

requireafinely spacedgrid in orderto accuratelycalculatetheirpropertiesandtheir

influenceon theexternalflow. Turbulentboundarylayers,in particular,demandavery

fine grid nearthewall in orderto resolvethehighgradientsof thephysicalpropertiesin

thisregion;however,amuchcoarsergrid similar to thatnecessaryfor a laminarboundary

layercanbeusedin theouterregionawayfrom thewall. Blottner11presentedanexcellent

exampledemonstratingthedifferentgrid requirementsfor laminarandturbulentboundary

layers.Blottner'sfigureis reproducedherein figure 1. With acommonouteredgeof the

boundarylayerdefinedandtherequirementof onepercentaccuracyof theshearstressat

thewall, Blottnerestimatedthenumberof uniformintervalsnecessaryto resolvelaminar

andturbulentboundarylayerson aflat plate.He foundthattheturbulentprofilerequired

twentytimesthenumberof intervalsasthelaminarprofile. Theadditionalintervals

requiredareadirectresultof thehighgradientregionnearthewall, andto alesserextent,



the increasedthicknessof theturbulentboundarylayer. An obvioussolutionto this

problemis theuseof anonuniformgrid whichclustersgrid pointswherethemost

resolutionis needed;in thiscase,gridpointsareclusteredin thehighgradientregionnear

thewall. Nonuniformgridsarein everydayuseandhavebeenfor manyyears.Despite

this technique,thegridrequirementsstill becomeexcessivewhendealingwithcomplex

two-dimensionalandeventhesimplestthree-dimensionalflowsascomputationaltimecan

takemanyhoursor daysevenon thefastestavailablecomputers.

An additionaltechniquewhichhasbecomepopularrecentlyis theuseof wall

functions. In effect,wall functionsreplacethehighlyclusteredgridpointsand

correspondingnumericalcomputationsnearthesurfacewith empiricallybased,analytic

expressionsfor velocity, temperature,andotherquantitiesasnecessaryfor compatibility

with aparticularturbulencemodel. It is, in fact,thepotentialreductionof computational

effort thatis themainincentivebehindthedevelopmentof wall functiontechniques.

Experimentalinvestigationsof turbulentflows, andthecorrespondinganalytic

investigations,haveestablishedexpressionsfor thenear-wallregionwhichhaveprovento

bequite accurateandrobust.Theuseof suchexpressionsshouldnotbeaconcernasit is

apparentthatall turbulentflow analysesarebasedonempiricismto someextent.The

logarithmiclaw of thewall for velocityisoneof themostwidelyusedandaccepted

expressionsof this type. It is, in fact,oneof themostwidelyacceptedempiricismsin all

of fluid mechanicsandhasprovenusefulevenbeyondtheboundsof its strictassumptions.

Thebasicconceptof thewall functionmethodsis to determineanalyticallythe

flowfield variablesfrom thesurfacetoapoint nearthesurfacewheretheanalytic

descriptionis valid. This is thefirst grid pointoff of thesurface.From thispoint outward,

theflowfield is resolvedwith anappropriatenumericalmethodandassociatedturbulence

model. Theanalyticdescriptionof theflowfield variablesat thefirst grid pointprovides

boundaryconditionsusedto computetheremainderof theflowfield. Mostmethodssimply

5



patchtheanalyticandnumericsolutionsatthispointwhilesome,suchastherecentmethod

of Walker,Fee, and Werle 12, formally match the outer limit of the inner solution to the

inner limit of the outer solution. A common characteristic of current wall function

approaches isthe precomputation designation of the first grid point off of the wall; that is,

the section of the flowfield to be determined analytically is decided prior to the

computation. This characteristic is independent of the numerical method and turbulence

model. The grid point location is crucial because it must be within the range of validity of

the analytic model at all streamwise locations. This grid point is typically chosen to lie

within the viscous sublayer or logarithmic region of the boundary layer. As such, this

approach does not take full advantage of the analytic expressions because their use is

limited to only a portion of their valid range. It follows that near-wall turbulence models

are still required although not to the same extent as without the use of wall functions.

Rubesin's review of turbulence modeling 3 points out several major advantages that

wall function methods have over methods that integrate to the surface. First of all, wall

function methods have proven to be quite economical due to the reduction in the number of

grid points required to resolve the flowfield as well as to the increase in the allowable time

step due to the increased size of the minimum grid spacing. Secondly, present near-wall

turbulence models have inherent physical uncertainties and, in some instances, result in a

numerically stiff set of equations near the surface. The use of the wall functions has been

shown to increase the accuracy of the solutions near the surface in many cases while

relieving this near-wall stiffness. As far as the accuracy is concerned, it should be

advantageous to model the inner region with an empirical representation which can be

validated by direct experimental observation rather than with another model, such as an

eddy-viscosity model, which cannot be validated by direct experimental observation. The

point is that error can enter through a model if said model is based on indirect empiricism



suchasvelocity measurementsbeingcorrelatedandput in theform of aneddyviscosity;

theeddyviscosityis notapropertywhichcanbemeasureddirectly.

Oneof themosteffectivewall functionmethodsto dateis thatof Viegas,Rubesin,

andHorstman13,which is anextensionof themethodoriginallydevelopedby Viegasand

Rubesin14to increasecomputationalefficiencyfor their studyof shockwave/boundary

layerinteractions.Theirmethodhasprovento besuccessfulnotonly by increasingthe

efficiencyof theirsolutionprocedurebyanorderof magnitudewith respectto thecomputer

timepersolution,butalsoby improvingtheaccuracyof theirsolutions.Themethodhas

provensuccessfuloveravarietyof flowfields includingtwo-dimensionalseparatedflows.

However,severalparameters,suchastheskin-frictioncoefficientandshocklocations,

remainsomewhatsensitiveto thechoiceof thefirst gridpointoff of thesurface(thepatch

pointof theanalyticandnumericsolutions).More recentlyWilcox15reportsthesensitivity

of the locationof thefirst gridpointon theskinfriction.

Themethodput forthin this investigationcombinestcaditionalwall functionideas

with featuresdesignedto furtherimprovecomputationalefficiencyandaddresssomeof the

shortcomingsof previousmethods.Theimprovementin efficiencywill beadirectresultof

furthergridreduction,andtheprimaryshortcomingaddressedis thechoiceof the location

of thefirst grid point. Themethodproposedconsiderstheturbulentboundarylayerasa

compositeconsistingof aninnerregionnearthesurfacewith anouterregionbeyond.The

tworegionsaresimilarto thoseencounteredwith zero-equationturbulencemodels,which

useseparateeddy-viscositymodelsin thedifferentregions.Theinnerregionis to be

resolvedin acompletelyanalyticmannerwhile theouterregionis resolvednumerically.

Theinnerregionexploitsthelaw of thewall for velocityin conjunctionwith anassociated

law of thewake. Thelaw of thewakeenablestheeffectsof streamwisepressuregradients

to influencetheregionnearthewall. Theenergyequationis replacedbyamodifiedform

of theCroccotemperature-velocityrelationship.Theouterregionis formulatedand

7



resolvedin termsof thedefectstreamfunction. This formulationproperlycharacterizesthe

outerportionof theboundarylayerasit relatesthelocalmeanvelocityto thevelocityatthe

outeredgeof theboundarylayer.

As statedearlier,thelaw of thewall for velocityis probablythemostwidely

acceptedempiricismin fluid mechanics.Themostcommonform of this law isknownas

thelogarithmiclaw of thewall andisvalid in thefully turbulent,logarithmicregionof the

innerpartof theboundarylayer. Othershavedevisedlawsthatarevalid from thewall

throughtheviscoussublayerandthelogarithmicregion. Onesuchexamplefor

incompressibleflow is the law givenbyLiakopolous16,whichwasusedin aprior

investigation17'18by thepresentauthor.Far andawaythemostpopularcompressiblelaw

of thewall is thatdescribedastheeffective,or generalized,velocity approachof van

Driest19,whicheffectivelyrelatesthevelocityin acompressiblefluid to acorresponding

velocity in anincompressiblefluid. ThevanDriestlaw isusedin thepresentmethodandis

discussedfurther in section2.2.

Law of thewakeempiricismshavenotbeendevelopedor usedto theextentaslaw

of thewall empiricisms,particularlyfor compressibleflows. Themostpopularlaw of the

wakeis thatpresentedby Coles20for incompressibleflow. Moses21alsogivesa

commonlyusedincompressiblelaw of thewake. Severalotherlawsfor incompressible

flow aregivenby White in reference22. McQuaid23proposedanincompressiblelaw that

usedamodifiedshear-stressvelocityasthenormalizingvariable,suchthatpressure

gradientsfrom themostfavorableto separationcouldbehandledwith relativeease,while

themorecommonlawsof thewakesimplyusetheshear-stressvelocityasthenormalizing

variable.Themostpopularform of acompressiblelaw of thewakeappearsto bethe

incorporationof Coles'law into thevanDriesteffectivevelocityapproach.Maiseand

McDonald24merelyspeculatedon thisextensionwithoutarigorousderivationandfound

this to beavalid approach.Thisextensionwasusedin theworkof Alber andCoats25and



furtherscrutinizedby Mathews,Childs,andPaynter26alsowith favorableresults.

Squire27usedacompressibleflow extensionof McQuaid'slaw andfoundthelaw to give

questionableresultswith Machnumbersof 3.6andabove.

It wasfelt thatanadditionalcontributionof thepresentinvestigationcouldbea

compressiblelawof thewakedetermineddirectlyfrom compressibleflow solutionsrather

thanrelyingoncorrelationswith a law thatis basedentirelyon incompressibleflow data.

This hasbeenaccomplishedandis discussedin detailin theupcomingsections.The

preciselaw of thewakedeterminedhereis valid throughtheinnerregionandinto theinner

portionof theouterregion. Thesignificanteffectof includingalaw of thewakeis the

extensionof theregionof theboundarylayerthatisdescribedby theanalyticexpressions

beyondthelogarithmicregion.Thisprovidesanadditionalgridreductionleadingto

increasedcomputationalefficiency. Physicallyspeaking,thelaw of thewakeallowsfor

theinfluenceof thestreamwisepressuregradienton theinnerregionof theboundarylayer.

Theimportanceof thiseffecthasbeendiscussedbymanyincludingMcDonald28,Pate129,

thepresentauthorin references17and18,andmorerecentlyby Wilcox in reference15.

A primaryfeatureof thepresentmethodis theapproachusedto patchtheinnerand

outersolutions.Specifically,thelocationof thepatchingis notpredeterminedbythe

researcher,butratheris determinedaspartof thecomputation.Thisapproachhasseveral

advantages.First of all, thearbitrarychoiceof the locationof thethepatchingis

eliminated.Secondly,thechoiceis madeaspartof thecomputationin amannerwhich

extendstheuseof theanalyticexpressionsateachstreamwiselocation. Variousmeansof

implementingsuchanapproacharediscussedin section3.3.

Theformulationin theouterregionis alsoakey factorwith thepresenttechnique.

A prior investigationby thepresentauthor17'18formulatedtheouterregionin termsof the

conventionalstreamfunction;theouterregionvelocitywasnondimensionalizedbythe

velocityattheedgeof theboundarylayer. Thecriticalimplementationfeaturewasthe

9



algorithmdevelopedto interacttheinnerandouterregiontreatments.Solutionswere

obtainedfor incompressibleflowsoverflat plates,andtwo-dimensionalellipsesand

circularcylinders. Oncepressuregradienteffectswereincludedin theinnerregion

treatment,successfulcomputationsweremade,althoughafair amountof numerical

difficulty wasencountered.Thepresentformulationreducesthenumericaldifficulty by

replacing,whenpossible,computationalstepsin theinteractionroutinewith equivalent

analyticsteps,Thisprocesswasfacilitatedbyreformulatingtheouterregionin termsof

thedefectstreamfunction;theouterregionischaracterizedbyavelocitydeficit,relativeto

theedgevelocity,normalizedbytheshear-stressvelocity.

Muchof theouterregionanalysisto follow is basedonpreviousanalysesby

Clauser30'31andby Mellor andGibson32. Clauser'sanalysisresultedfrom a desireto

studyturbulentboundarylayersexcludingupstreamhistoryeffects. Thecomparisonis

madeto theself-similarlaminarsolutionsof Blasius,andFalknerandSkan,asshownin

mostfluids textbooks,wherethegoverningequationsreduceexactlytoordinary

differentialequationform, resultingin asolutionindependentof thestreamwiselocation.

Theproblemfor turbulentflows ismuchmoredifficult, asnotonly mustthemeanvelocity

profilesbesimilar,butalsotheprofilesof theturbulencequantities.Clauserobservedthat

experimentaltangentialvelocityprofilesfor incompressibleturbulentboundarylayersona

flat platereduceto a singlecurve,independentof theReynoldsnumber,whenplottedin

termsof thevelocity defectnormalizedby theshear-stressvelocity. Severalof Clauser's

figuresfrom his 1956paper31arereprintedherein figure 2 for thepurposeof

demonstration.Figure2ashowsseveralturbulentvelocityprof'tlesfrom flat plate

experimentsplottedin theconventionalvelocityratio format. Figure2bdemonstratesthe

collapseof thedatato a singlecurvewhenplottedin thevelocitydefectformat. Clauser

furtherprovedthatvelocitydefectprofilesof turbulentboundarylayerswith streamwise

pressuregradientsarealsoself-similarif thepressureandskin friction forcesare,in his

lO



terminology,in equilibrium. Clauserdetermined,with mucheffort, thatapressure

gradientparameternormalizedby theratioof the(incompressible)displacementthickness

to theshearstressatthewall designatesthevariousfamiliesof similarsolutionsfor

turbulentboundarylayerflow. A similarparameterfor compressibleflow is determinedin

thepresentinvestigation.

Anotherof Clausefscontributionswasthedefinitionof ahighlyaccurateeddy-

viscositymodelvalid in theouterregion. Themodelis aresultof Clauser'sobservationof

the laminar-likebehaviorof theouterregionof theturbulentboundarylayer.To

demonstratethis similarity,ClausersolvedtheBlasiusequationwith variousnonzerowall

velocities,asshownin figure 2c,andcomparedto theturbulentprofilesshownin figure

2b. Thesimilarity awayfrom thewall, asshownin figure 2d, is remarkable.Clauser

determinedthepropervelocityandlengthscalesto betheedgevelocityandthe

(incompressible)displacementthickness,respectively,andacorrespondingconstantwhich

completedanouterregioneddy-viscositymodelthatremainsconstantnormalto the

surface.Thesescalesweresubsequentlyverifiedfor compressibleflow by Maiseand

McDonald24andvariationsof themodelarestill widelyusedtoday.

Clauserdid notderivethegoverningequationsin termsof thedefectstream

function,but ratherusedtheconventionalstreamfunction. Althoughothersstudied

equilibriumturbulentboundarylayersafterClauser,it wasnotuntil tenyearsafterClauser

thatMellor andGibson32put forth aclear,accuratederivationof thegoverningequationsin

termsof thedefectstreamfunctionvariables.It shouldbenotedthata significantportion

of theworkdescribedin reference32wasoriginallypresentedfour yearsearlierin

Gibson'sdoctoraldissertation33. Thework of reference32 isrestrictedto theanalysisof

incompressible,equilibriumturbulentboundarylayers.Mellor andGibsonobtainedan

extremelyaccurate,approximatesolutionto thegoverningequationsin thelimit of

vanishingshear-stressvelocityto edgevelocityratio. They also determined a completely
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analytic solution of the governing equations by using this approximate equation and taking

advantage of the first-integral property of the tangential momentum equation. With this

solution, they established the extremes of Clauser's pressure gradient parameter from the

most favorable pressure gradient to separation. The two major problems with their

formulation concerned the enforcement of law of the wall behavior near the wall and the

implementation of the wail-layer eddy-viscosity model. Also, the wall boundary condition,

which is inversely proportional to the shear-stress velocity to edge velocity ratio (the ratio is

a small number), presents numerical difficulties. The computational complexity Mellor and

Gibson encountered near the wall probably explains the general lack of popularity of the

defect stream function formulation. Even Mellor 34 abandoned this formulation for his

analysis of nonequilibrium, incompressible turbulent boundary layers. The present

technique completely overcomes the difficulty near the wall by use of analytic expressions

in the inner region.

A significant accomplishment of the present investigation is the extension of the

defect stream function formulation to nonequilibrium, compressible turbulent boundary

layers. The derivation follows in chapter 2. Chapter 3 presents the inner region treatment

and discusses its implementation. Finally, chapter 4 discusses the results of the present

technique. The equilibrium class of boundary layers has been used extensively over the

years in the development and testing of analytic and numerical methods. The process is

continued in the current investigation: section 4.1 shows solutions for equilibrium,

incompressible flow; and section 4.2 discusses equilibrium, compressible flow solutions.

Section 4.3 discusses the initial implementation of the method into an existing Navier-

Stokes code and presents results for several cases of compressible flow over a flat plate.

12



2 DEFECT STREAM FUNCTION

FORMULATION

The basic formulation parallels that of Mellor and Gibson 32 for incompressible,

equilibrium, turbulent boundary-layer flow. However, the present treatment is for

compressible, nonequilibrium, turbulent boundary layers; and the eddy viscosity model for

the present treatment is much more general than that of reference 32. In fact, it is

unnecessary to specify the eddy viscosity in the inner layer at all.

2.1 Basic Equations

The Reynolds-averaged continuity and tangential momentum equations for

compressible turbulent boundary-layer flow in two dimensions are

O(pu)+ _(pv...._2)=0
3x 3y

_u _u du_
PU_xx + pV_yy- peUe--a--_- = _Y

(2.1)

where x and y are the tangential and normal coordinates, u and v are the respective velocity

components, p is the density, and the subscript 'e' designates values at the edge of the

boundary layer. The shear stress x is

Ou
'¢ = ix 7-- - ph-_ (2.2)

oy

where Ix is the molecular viscosity of the fluid and (-p-'d_) is the Reynolds stress term, a

direct result of fluctuations inherent to turbulent flow. The Reynolds stress term must be

modeled because an exact, analytic form is not known. In the present investigation the

Boussinesq 8 eddy viscosity concept is used rather than a more complex stress transport

13



equationmodel. TheBoussinesqconceptimitatestheNewtonianassumptionthattheshear

stressis linearly proportional to the mean rate of strain; the Reynolds stress is modeled as

3u (2.3)
-ph-7 = l.tt 3y

where l.tt is the eddy viscosity. The eddy viscosity is proportional to a velocity scale and a

length scale; the choice of these scales distinguishes the various eddy viscosity models

from one another. The present derivation models the sum of ix and P.t as

I.t + l.tt = K(x,y)pueS_ (2.4)

where K is a general nondimensional function of x and y and 8'_ is the incompressible

displacement thickness. The incompressible displacement thickness 8'_ is sometimes

referred to as the velocity thickness 35 and is defined as

j u5*= (1 -_) dy

This model (equation (2.4)) is of the form proposed by Clauser 31 for the outer region of

incompressible turbulent boundary layers. The generality of the present form is achieved

by the use of the arbitrary function K(x,y), which allows this model to duplicate other

existing turbulence models without affecting the present derivation. Although the function

K(x,y) can have separate definitions in the inner and outer regions of the boundary layer,

only an outer region definition is required with the present technique. The present solutions

were computed assuming K(x,y) = k in the interest of simplicity, where k is the Clauser

constant.

The energy equation is accounted for by use of the modified Crocco temperature-

velocity relationship. The basic relationship was derived by Crocco 36 with following

14



assumptions:steadyflow of aperfectgas,Prandtlnumber(Pr)of one,which impliesa

perfectbalanceof viscousdissipationandheatconduction,streamwisepressuregradientof

zero,andaconstantvalueof thespecificheatcoefficientCp.Thebasicrelationshipis

u2
T-- w+

where Tw is the wall temperature and Taw is the adiabatic wall temperature. Baronti and

Libby 37 have made a detailed investigation of the accuracy of the Crocco relation for

adiabatic flows and state that they found deviations of less than plus or minus four percent

in the static temperature ratios obtained throughout the boundary layer• Gran, Lewis, and

Kubota 38 have compared this relation to nonadiabatic experimental cases and found no

significant deviation. White 22 shows a modification to this equation in which a recovery

factor is introduced as follows:
r

T=Tw+(Taw-Tw) u ru 2

where r is the recovery factor and is defined as r=-Pr 1/3 for turbulent flow (r=Pr 1/2 for

• 22
laminar flow). This equation has proven to be a very good approximauon" of the energy

equation even beyond the bounds of the strict assumptions.

Adiabatic wall conditions are assumed in the present study; the modified Crocco

temperature-velocity relationship for adiabatic walls is

Tw P=l+r =l+r M 2
"T"= Pw

(2.5)

where _ is the ratio of specific heats (taken to be 1.4), a is the speed of sound, and M is the

Mach number• The Prandtl number is assumed to be 0.72 in this study. The simplicity

and effectiveness of this relationship avoids the use of the differential energy equation and

the corresponding need for temperature laws of the wall and wake.
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In thistreatment,thedefectstreamfunctionof Clauser30'31is modifiedto account

for compressibility.Thedefectstreamfunctionf(_,rl(x,y)) of thisformulationisdefined

suchthat

U-U e
b---_f= f'(_,rl)= ""7- (2.6)

u

where the transformed coordinates are

Y

fP--dyp== x and rl=7

The coordinate transformation incorporates a density weighting integral similar to that

originally proposed by Mager 39. This particular transformation of the normal coordinate

was chosen because it reduces to the form used by Clauser, and then Mellor and Gibson,

for incompressible flow. The shear-stress velocity u* is defined as

where Pw and Xw are the density and shear stress at the wall. The compressibility

transformation yields the density-weighted velocity thickness _,, which appears throughout

the derivation and is defined as

U
8v = (1 -_) dy

The boundary layer defect thickness parameter A is defined as

16



OO Oo#0f u ue .A=- _dy=7 (1 -_)dy= "7

or

An* = ue_ v

Partial derivatives with respect to x and y are of the form

m= _._. _ and
 xan  =Apo 

2.2 Law of the Wall and Wake

It is assumed that a law of the wall and wake for velocity in the inner part of the

boundary layer is known. This law is of the form

U
= g(y+,Me) + h(13,q,Me)

U
(2.7)

where g is the law of the wall and h is the law of the wake. The inner variable y+ is

defined as

* Res* =
y+ =u Y=_n

Vw

where o and _1 are defined as

¢o _ and Yl y
_ a

and the Reynolds number based on the edge velocity, the incompressible displacement

thickness, and kinematic viscosity at the wall is defined as

ueST u*a
Res* = _ = _ 0

Vw Vw
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Thecompressiblepressuregradientparameter,whichreducesto Clauser'spressure

gradientparameterfor incompressibleflow, isdefinedas

= ,_'_ dx

where p is the pressure. A modified form of the parameter 13will be def'med later and

shown to be the compressible equilibrium parameter. For nonequilibrium flow, this new

parameter is a function of x and hence _; for equilibrium flow, this parameter is constant.

In the present lreatment, van Driest's 19 effective velocity (or generalized velocity)

approach, as simplified for adiabatic flows and modified by the recovery factor, is used for

the law of the wall:

g(y+'Me) = qr_2__l ) "u*"(aaw_sin{q r(_'-l'-''_) (_-aw) (lln y+ +B)}2 _: (2.8)

where aaw is the adiabatic wall speed of sound and _ and B are the law of the wall

constants. Van Driest's derivation parallels Prandtl's 40 derivation for incompressible flow.

The assumptions used are that the shear stress in the fluid is constant and approximately

equal to the shear stress at the wall and the mixing length is linearly proportional to the

distance from the wall. Van Driest incorporated a variable density into the derivation in the

form of the Crocco relationship. Again, equation (2.8) has been simplified for flows with

adiabatic wall conditions. Because the ratio (u*/aaw) is generally small, the law of the wall

is often used as

g(y+,Me) = lln y+ + B + O[(aU-_) 2]

Neither of these expressions is valid in the laminar sublayer.
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Law of thewakeempiricismshavenotbeendevelopedandusedto theextentthat

law of thewall empiricismshave,particularlyfor compressibleflow. It is widelyaccepted

thatthe leadingtermof the incompressiblelaw of thewakeis proportionalto y2. Thereis,

however,disagreementovertheorderof thesecondterm22. Moses21,for example,usesa

secondtermproportionalto y3while Coles'20secondtermis proportionalto y4. If thelaw

of thewakeneedsto bevalid from thewall throughtheinnerpartof theouterregionof the

boundarylayeronly, asingletermproportionalto y2is sufficientto definethewake

function. In thepresentcompressibletreatment,a functionalform proportionaltoy2for

the law of thewakeis assumedandis modeledaftertheleadingtermof theMoses

incompressiblelaw of thewake. Thepresentlaw of thewakefor compressibleflow is

h(]],_-l,Me)= 6 w _2 (2.9)
!(

where w = w(13,Me) is a coefficient determined as part of the computation. The procedure

for determining this coefficient is discussed later, and an analytic expression is given as a

result of the present computations.

2.3 Shear-Stress Velocity Ratio

The nondimensional shear-stress velocity is defined as

U*

T=ue

In the present treatment, the ratio T is evaluated with the laws of the wall and wake. From

equations (2.6) and (2.7) it is seen that the velocity u at the match point rlm between the

inner and outer regions of the boundary layer can be expressed as

Um=u*[g(y+) + h(_lm) ] = Ue + u*f' (_,rlm) (2.10)

The equation for),is obtained from equation (2.10) as
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1

7=[ gm + hm - f_ ] (2.11)

In the analysis that follows an expression for the gradient of y with respect to _ is needed.

Differentiation of the above expression yields

_'= -y2 [ gm + _m - _a ] (2.12)

where

The derivative of the law of the wall (equation (2.8)) with respect to _ is

= m_ O U* 2

tCy Ue A Vw
(2.13)

Substitution of equation (2.13) into (2.12) yields

Ue_/= lC [ 1 +ue(__V__w) ]-t Pe A (hm - t'_a)

Ue Y (1 + T_..) ue A Vw pwl3 (1 + Y)

This term was neglected by Clauser 31 but was found to be important and included by

Mellor and Gibson 32 in their incompressible analysis. The present compressible analysis

will also require the following relationships:

Pe v Ue

_'..._.w= _tw Pw

Vw _w Pw
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1+3 g
g.__w=[ T-w'w][ 2( 1_ p_._w)(r- I) ] {le
_tw Pe ?

2(1 +_

Pc_ 1

I_w=. [ M_ + 2( i.pw) (1 + pw )]Ue
pw Pe ""7--

These relationships are derived from the perfect gas equation of state, the modified Crocco

relation for adiabatic wall conditions (equation(2.5)), and Sutherland's viscosity law 22

where g = 199°R. Note that the term Ue Vw is a known function of Me.

Ue Vw

2.4 Governing Equations

Now one equation for the defect stream function f can be written. The gradients of

u with respect to x and y are

b u= due (1 0--4_bx "SZ" +_')+U_bx,,.')+u_Tf"_

bU pueTf"

by pea

respectively. From the def'mition of the stream function

bte bte
m .--n

pu= by and -pv bx

it can be shown that

W = peueA (rl + _')

and the flux pv is obtained as
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(2.14)

In thedefectstreamfunctionformulation,thetangentialmomentumequation,equation

(2.1), is

--- __ ue A)COpe [K(P)2f,,], + Pe (2f' +Tf'2)-(1 + -- [(rl +Tf)f"

I_ Pw Pe Pw UeA

_: Ue{'w 2 ,fff,,)c 2 ,yf)f,, + (f, +T f, )4 (f' + Tf' - Tff")] + M_(TI +

(I +'Y) (1 +I-Y)Uevw
R: K

( Pe (-_- =-_)(f' +Tf' 2 - Tff" )

(1 + _.T)Pw
K

_Pe 1 [0f' Tf'0f' Tf,,0f]- TCw + -57-

(2.15)

where s is the nondimensional tangential coordinate def'med as

2.5 Boundary Conditions

There are two surface boundary conditions and one far-field boundary condition.

From equation (2.14) for the flux pv, the normal flow boundary condition at the surface,

v = 0 at rl = 0, is observed to correspond to

f(s,0) = 0

22



Thefar-field boundaryconditionisobtainedfrom thedefinitionof theboundary-layer

defectthicknessA:

A =- P _dy = -A _dll = A (f(s,0)- f..(s))

It follows that

f** (s)= -1 (2.16)

This boundary condition requires that u approach Ue as y approaches infmity. The final

boundary condition involves the shear stress at the wall. The shear-stress boundary

condition is

Xw = _u_ (i-t + I-tt) _

This boundary condition can be written as

2 2, ,,
K(_,rl)p Ue 8i'Yf

pwU*2 pax

or

_x_ K(_,ll)(pP---22f''=leoP__Wpe
(2.17)

This boundary condition replaces the usual no-slip boundary condition at the surface

(u(s,0)=0) and states simply that the shear stress must approach the wall shear stress as y

approaches zero.

It should be noted that these boundary conditions reduce to those used by Mellor

32
and Gibson for incompressible flow.
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2.6 First Integral of Governing Equation

It is always desired to reduce the governing equations to their simplest form

analytically before turning to numerical analysis. The advantage of such an analytic

integration is twofold: the order of the equation to be solved numerically can be reduced,

and boundary conditions can be absorbed and not imposed numerically. The defect stream

function governing equation has a first integral, and one boundary condition is absorbed

analytically. As will be seen, however, a limited advantage is gained for the full equation.

It is only upon making the zero-order approximation in the limit of vanishing shear-stress

velocity ratio that the full advantage is gained.

Equation (2.15) can be written as

[ OeK (2.)2f,,
[_ Pw Pe

ueA) (1-$f')f+2Pef-(l+ {rlf'" } +
pw --ZJ

Ue (1 +2)
K

@) Pe [dhm dffia'_ (1-Tf')f

(1 + 2)Pw'"d'7-" ds /
K

_(1-Yf')f(Me2+2{M2_UeVw }) Pe 1 _f

( 1 + 2) _ fie Vw Pw _ c)s
K

__, 2

(1 +Y)
K

UeA Pe 2({l+ueh.
[(1 + .--_-) - M_ +---

+ Pe Yf, _)f],
Pw 13 _s

2pe (dhm df_/1 Pe T3f'2
+M_-2 ue_'w Pe-)+213pw_,d s - ds.,a +

/_eVw Pw Pwf_ as

Using the boundary condition given in equation (2.17), the above equation can be

Ue A
integrated across the boundary layer to evaluate the quantity 1 + ----. This value is

Ue A
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&
uoa1+ -[(I+Y--) 1 pe{2 - . _ Ue_'w----= + "I_3} Me2 {1-yG}-

{le A _: Pw (1 +_-Y)Ue vw
1¢

'Y Pe (dhm dd__)+Oe TdG)+ (1 2"1_3)][1-'_3(1-T)] "1

1

= 1 +m----_ •

(2_K} - 1)

(2.18)

where the defect shape factor G is defined as

It is necessary to incorporate a Mach number scaling effect into the coordinates in

order to determine the conditions for compressible equilibrium flow. The following

transformation allows for this effect:

s

a-f es aria
_Pe _/ Pe

Applying this transformation and integrating across the boundary layer, the first integral of

the governing equation for arbitrary _ is

(1__,) _ss=0f 0_(O..p.)2Kf,,pe -[3(1 + 1-M_)(_f'm _ (1-_')f)(I+'_Y)

K

&
K

• A

_(1-_' )f(M_ - ueVw-) + 213 Pe f - 1 +.T......_[ [3(1-_lm- M_ +Pe)(1_ T_)

(I+Y) _eVw Ow (1 +.Y.Y) Ow _¢
K K

^

rl

1¢ _eVw Pw ' _ Pe ds

(2.20)
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A A

rl rl
^() r, 2

-pwO"_'e_..t[3"I-PW)(l-(1-r)-P--_-)[_f'OePe + _,Jf,2 d_l)]-Y_ss_f d_

(1+Y-ItT _ Pe.s
K

where the prime denotes partial differentiation with respect to _1. The term (1 + 1) is

A °

defined in equation (2.18), and the parameter 71s defined as

Note that for the adiabatic wall conditions of this investigation, the density ratio (Pw/Pe) has

values between zero and one, which assures that _, is less than or equal to 7. Expressions

for the ratios o3 and (Pe/P) can also be written in defect stream function form:

8T I/f, 2 __/pwCo=_'= 1 + C. (1 + rN "_"e

P._e= l+r (_.M_[l'(_)2]=l-ef'[l+2N_e ]
P

where

_=2Y_pP--_(1-_)po

For edge Mach numbers from incompressible to supersonic this parameter is small so that

the ratios (_ST/G) and (Pe/P) are approximately one. However, because E has the limiting

form
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_Me

it is not small for large values of the edge Mach number. The term e is similar to Coles '41

parameter cfM_, which remains finite for large Mach numbers. The skin friction coefficient

cf is equal to (2Xw/poouo,2).

It is apparent that the analytic integration shown in equation (2.20) provides an

advantage over equation (2.15), the equation before integration. The governing equation,

which is now in the form of an integro-differential equation, has been reduced to second

order (leading derivative of f") and one boundary condition (equation (2.17)) has been

absorbed analytically. The integral terms in equation (2.20) are of higher order, and are

evaluated easily when solving this equation. The full advantage of the first integral

equation is seen in the next section where the zero-order approximation is made.

2.7 Zero-Order Approximation

As mentioned previously, the shear-stress velocity ratio ), is generally small. As a

result, the dependent variable of the defect stream function formulation f can be expanded

in terms of the shear-stress velocity ratio. Mellor and Gibson 32 used this expansion in their

incompressible analyses to obtain a zero-order, asymptotic form of the governing equations

with respect to the shear-stress velocity ratio. The expansion of f is

f = fo + Tfl + T2f2 + ....

Asymptotic forms are obtained for equations (2.18) and (2.20). For hypersonic flow,

these asymptotic forms are not the strict zero-order forms because the term 8 appears in

both o and (Pe/P) and is not negligible. The constrained zero-order forms of equations

(2.18) and (2.20) are
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ueA 1+ 2Pe_M_)

pw

foI
o_,= co I_h¢'(_+ (I+213)^ '- -

^

where the pressure gradient parameter 13is deemed as

(I.P__..w)
Pe (1_ Pw{ l_r})]= P"e'-e13[1 " 2r

Pw Pe

(2.21)

Note that equation (2.21) is linear from incompressible to supersonic flow because co and

(Pe/P) are approximately one. An additional transformation is necessary to obtain a

governing equation which is linear in the hypersonic range. This transformation is

described in reference 42 and shown in Appendix A.

The full advantage of analytically integrating the governing equation is now

apparent. The terms in equation (2.20) are either simplified or eliminated when making the

zero-order approximation; the integral terms of equation (2.20) are considered to be small

and are neglected. The result is simply a second order differential equation and one

boundary condition has been absorbed analytically.

2.8 Equilibrium Flow Approximation

The equilibrium condition, as defined by Mellor and Gibson 32, occurs

mathematically when the profile of f, and hence u, depend only on the nondimensional

normal coordinate and not on the streamwise coordinate. These authors noted that the

streamwise partial derivatives are zero when the coefficients of the governing equation are

independent of the streamwise coordinate, and they showed that this condition can be met

exactly for the zero-order incompressible equation and approximately when higher order

terms are included. This same situation pertains for compressible flow. If K does not
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depend on s, is constant, and both co and (Pe/P) are approximately one, the coefficients

• A

of equation (2.21) are independent of s and, since the boundary conditions are also

independent of_, the derivative on the left side of equation (2.21) is zero. The more

A

complicated coefficients of equation (2.20) depend weakly on s.

The equilibrium form of the full equation (equation(2.20)) is

1 (1-'_tf' _(l__/f, ) f (M_. Ue Vw)t0(P---)2 Kf '' -_(1 +_-M_) (_f' - )f)_ x:

Pe (1+ _'y) (1 -_-Y) Ue vw
K K

A

+ 213 Pef. 1 + Y [ 13(l+-_lm - M_ + Pe) (1.Y.Y)_ 2--Y13 (M_

Pw (1._.Y) Pw ic _c
K

A

n

Pw r Pe Pe

A

rl

Ue Vw Pe.) ] Jf, 2 d_
ueVw Pw

(2.22)

The equilibrium form of the constrained zero-order equation (equation (2.21)) is

c0(P--_.-)2Kf'6 + (1+2_) ^ 'rlfd- f0- 1 =0 (2.23)
Pe

It will be shown that numerical solutions to the nonlinear, equilibrium equation (equation

(2.22)) and solutions to the approximately linear form of equation (2.23) are virtually

identical. Each of these equilibrium equations is an ordinary differential equation.

Mellor and Gibson 32 have shown that the zero-order incompressible equation is in

the form of a confluent hypergeometric equation, which has an analytic solution 43. They

showed equilibrium solutions to exist from _ = -0.5, the most favorable pressure gradient

case, to 13= .0, the incipient separation case. The corresponding compressible analysis is
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presented in reference 42, and the analytic solution for compressible flow is given in

Appendix A.
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3 Inner Region Treatment

It is this treatment which most distinguishes the present method of solution from

previous methods. In effect, the treatment replaces the inner region numerical

computations with an empirical representation. The inner region generally encompasses the

inner-most twenty percent of the boundary layer and can extend beyond the logarithmic

region of the boundary layer. It can also be thought of as the region where an inner eddy-

viscosity model is used in the zero-equation eddy-viscosity approach. The need for an

eddy-viscosity model in this region is completely eliminated. The empirical representation

is in the form of the law of the wall and the law of the wake for velocity as defined in

equation (2.7) and the modified Crocco relation for the temperature as defined in equation

(2.5). The laws of the wall and wake need 0nly be valid in the inner region for the present

method; the Crocco relation is used across the entire boundary layer. The outer region of

the boundary layer is where the outer eddy-viscosity model pertains.

In general, there is one point, the "match point," where both the laws of the wall

and wake and the outer eddy-viscosity model are correct. The present treatment assures

that the derivatives of the defect stream function through f" are continuous at this point.

The term "match point" should not be construed to mean that the inner and outer solutions

are being matched in the formal sense. Actually, these solutions are being patched at one

point. As discussed in references 17 and 18, this procedure is completely analogous to

patching the inner and outer eddy viscosity models in the zero-equation modeling approach.

It should be noted that the inclusion of the law of the wake in the inner layer model

means that the match point is not confined to the logarithmic part of the boundary layer.

Several key points must be addressed when deriving and implementing this inner

region treatment. First of all, an equation relating the velocity, as represented by f', and its

integral, represented by f, through the inner region must be available to insure a continuous

solution across the match point. Secondly, an equation which allows the determination of
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the match point as part of the computation must be determined. Finally, a procedure must

be developed which allows the implementation of the patching of the inner empirical and

outer numerical solutions in an efficient manner. These points will now be addressed.

3.1 Equation relating f and f'

An equation can be established which relates f and f' throughout the inner region of

the boundary layer. This equation follows from the definitions of f and the laws of the wall

and wake:

jafan onaf f (a__g_.g+Oh)

f= ='-dtl = tl _- - TI -- dtl

A relationship between the 1] and tl is needed to form the final inner region relationship

between f and f'. Such a relationship is

{1 +----_-sin20 - 2)c(tan0- 3__ + 2)0] +O[(a_w)4]}

rl Pe cos20 t cos20

(3.1)

where the terms 0 and )Cresult from the modified van Driest law of the wall (equation

(2.8)) and are defined as

=Y_[ 1 - p..._.w and

Pe

0 = )Clc(1 In y+ + B)
K

Note that the term Z_c is no larger than the shcar-stress velocity ratio Y arid the term 0 is

typically small, which enables use of the small angle approximation in equation (3.1). The

relationship between f and f' is written as
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cosO{cos20 - 3)_sinO cosO+ 12X 2 - 7_2cos20]. f _h
'_ cos_O 2zsinO cosO q-;Vp:'h_ "_)- --d_

The lowest order approximate relationship between f and f' is written as

f = rl(_'- 1) - f rl°ah dfl + O[(a_w )2]!¢ o_

(3.2)

This equation pertains throughout the inner region, where the empirical law of the wall and

wake is valid. Note that because h is proportional to _12, the integral term is proportional to

_3; the integral term is small throughout the inner region because _lm is small. The use of

this equation at the match point insures the continuity of f and f'. The match point is

positioned so that the derivative f" is continuous. The transformation given in equation

(2.19) is easily applied to the equations of this section.

3.2 Match Point Location

The match point location is determined using the equilibrium form of equation

(2.20), which is the first integral of the tangential momentum equation as given in equation

(2.22), and equations (2.7) and (2.8) for the law of the wall and wake, which are used to

evaluate the f" term in equation (2.20). The equilibrium flow assumption can be used

because the derivatives with respect to ^ "s m equation (2.20) are small in the inner region

where the match point is located. Equation (3.2) is used to relate f and f'. Equation (2.22)

is evaluated at the match point and, with some manipulation, the constrained zero-order

form of the governing equation is
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Kp0_{ l"_+(c)h)m} +(l+2_)_lm(_fAf) -fm-l=0
Pw icl'lm _ m

(3.3)

Usingthetransformationgivenin equation(2.19)andequation(3.1),thelowestorder
. A

relauon between rl and _ is

Because the law of the wake in equation (2.9) is of order _12 near the wall, the

integral term in equation (3.2) is of order _3 and can be neglected as _lm is small. If

equation (3.2) is substituted into equation (3.3), the equation for the match point location is

K p_m..m= 0AV'I2- Vqm +--co (3.4)
_: Pw

where the constrained zero-order form of the term A is

1 _ _+ 2Ao(_f'_ / 12w K po).__..
A = (pw)3/2pe {TN _'w P('_ "1m1 +--lc Pw

(3.5)

It is in equation (3.4) that the law of the wake plays its most significant role in the analysis

and, from equation (3.5), it is the leading coefficient of the law of the wake which is truly

significant. The solution for _qm is easily determined from equation (3.4) as

1-_I-4AKo,) Pm
_-lm = Pw2A (3.6)

3.3 Implementation of Inner Region Treatment

There are several methods with which to implement this inner region treatment.

The essential feature is that the inner region formulation properly interact with the

numerically computed outer region solution. As discussed earlier, the formulation is such
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that f, f', and f" are continuous at the interface between the two regions. In primitive

variable terminology, this means that the integral of the velocity profde, the velocity u, and

the velocity gradient _u/by are continuous across the match point. In effect, the inner

region formulation provides boundary conditions for the outer numerical solution. This is

the same concept that has been used in other wall function methods. Again, the main

differences of the present method are the increased region of the boundary layer that is

modeled empirically and the fact that the size of this region is not predetermined by the

researcher (ie. previous methods limit the use of empirical expressions to a predetermined

distance from the wall) but is determined as part of the solution process.

Once the match point is determined, empirical expressions are evaluated at this point

so that the properties of the flow are determined and used as boundary conditions for the

numerical computation of the outer region. These new boundary conditions replace the

traditional no-slip at the wall boundary conditions normally enforced at the wall for viscous

flows. The region of the boundary layer requiring numerical computation on a highly

clustered grid is significantly reduced. This is true for previous wall function methods and

was, in fact, the main incentive behind the development of these methods. As mentioned

before, the present treatment increases the savings.

At a given streamwise location, the present treatment yields a single, physically

accurate match point location; this location, however, is variable in the streamwise

direction. Problems with the implementation of the new boundary conditions arise because

the grid is typically established prior to the numerical computations; it would be fortuitous

if the variable location of the match point would always, or ever for that matter, fall on an

existing grid point. Computationally, there are several options as to the point of application

of the empirically determined, match point boundary conditions.

The obvious In'st option is to apply an adaptive grid technique that forces the grid

point nearest the wall to coincide with the match point at each streamwise location; the first
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grid point off of the wall adjusts itself with each iteration, or time step, during the

computation such that it is always located at the current match point. The match point

boundary conditions are enforced at the f'trst grid point. This approach is very complex for

the general case of nonequilibrium flows, but is relatively simple for equilibrium flows.

This is the primary approach used in the present investigation when computing equilibrium

flows (both incompressible and compressible); the details of this technique as applied here

for equilibrium flows are given later.

An approach must be developed that relates the match point to a general, fixed grid.

Several options present themselves. Since the inner region of the boundary layer is thin

relative to the boundary layer thickness, it should be admissible as a first approximation to

impose the match point boundary conditions at the geometric surface. This is comparable

to translating the point of application of boundary conditions in thin airfoil theory to the

airfoil chordline. A more accurate approximation is to apply the match point boundary

conditions at the grid point closest to the match point. Flowfield information at the grid

points between the match point and the surface is supplied by the law of the wall and wake.

Another possibility is the definition of a new transformed normal coordinate that is

defined such that the match point is located at a constant value of the new coordinate for all

streamwise locations. Such an approach requires the definition of a scaling function used

in the transformation of the normal coordinate. The scaling function is dependent on the

streamwise location and varies from flowfield to flowfield. Melnik 44 and Walker, Ece, and

Werle 12 have developed methods incorporating this approach.

The notion of applying surface slip velocity boundary conditions is reminiscent of

Clauser's 31 analysis of the outer region of turbulent boundary layers and comparison to

laminar boundary layers with slip velocities. Note the slip velocity corresponding to the

outer region shown in figure 2d. It would be desirable to use information determined from

the inner region treatment and the matching process to define surface boundary conditions
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which enable the proper numerical computation of the outer region of the boundary layer.

In effect, the outer region is assumed to extend all the way down to the wall so that only an

outer eddy-viscosity model is required. The shear stress at the wall associated with the

outer eddy-viscosity model is forced to be equal to the physically accurate wall shear stress.

As a result, the numerical computations from the wall to the match point yield nonphysical

information. However, the numerical solution becomes physically accurate upon reaching

the match point, thus providing the proper description of the outer region. The condition

specified in this approach is on the velocity gradient at the wall, which implies a condition

on the shear stress at the wall. In words, the numerically computed wall shear stress must

be equal to the physically accurate wall shear stress which is determined from the empirical

inner region and matching treatments. Mathematically, the boundary condition on the

velocity gradient enforced at the wall is

"'- z- I.t+l.tt - KpsueS_
(3.7)

and is written in defect stream function variables as

[=a_.( af .,i1 pw (pe) 2 6T

This equation is a direct result of the definition of the shear stress (equation(2.2)) using the

eddy-viscosity concept (equation(2.3)). The arbitrary function K is chosen in the form of

an outer region model, such as K=k where k is the Clauser constant. This outer solution

includes a nonzero surface slip velocity and the associated surface density Ps.

Conditions on the velocity gradient at the wall ha_,e been used prior to this

investigation by other researchers. The condition used by Gorski et a145 is common among

wall function approaches. The condition is of the form
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and is simply the derivative of the common logarithmic law of the wall. This condition

does not enforce the outer region model at the wall, but rather provides the compatibility

between the velocity, as determined from the law of the wall, and its normal derivative in

the near wall region. Melnik 44, on the other hand, has developed a condition for

incompressible flow that is also in the tradition of Clauser. His condition, which was

developed independently from the present investigation, is essentially the same condition as

the incompressible form of the present boundary condition.

It is felt that the implementation of the inner region treatment will be best handled in

the general, nonequilibrium case by use of the slip-velocity approach just described. This

approach is used in the primitive variable applications of this investigation. It has also been

successfully implemented into the equilibrium boundary layer solution procedure using

defect stream function variables.
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4 Results and Discussion

This chapter traces the development of the present method in chronological order.

The initial phase of the investigation involved the derivation of the nonequilibrium defect

stream function formulation for incompressible flows. The formulation reduces to that of

Mellor and Gibson 32 for equilibrium flow. The primary accomplishment of the

incompressible studies was, however, the development and implementation of the

technique used to match the empirical inner region solutions with numerically computed

outer region solutions. Another new feature was the use of a law of the wake in addition to

the law of the wall. An existing law of the wake was used in this part of the investigation.

The primary phase of the investigation was the development of the nonequilibrium,

compressible defect stream function formulation and the corresponding compressible inner

region treatment in conjunction with the matching of the inner and outer region solutions.

The compressible formulation was designed to reduce to the incompressible form of the

initial work. A method for determining the coefficients of a postulated compressible law of

the wake was also developed. This resulted in an analytic equation for the compressible

law of the wake valid from the wall through the inner part of the outer region.

The final phase consisted of the application of the present techniques in primitive

variable form. The method was incorporated into an existing two-dimensional Navier-

Stokes code and tested for several cases of compressible flow over a flat plate.

4.1 Incompressible Flow

Solutions for incompressible, equilibrium boundary layers have been computed

with the asymptotic, or zero-order, and full-equation forms of the present method. As

discussed earlier, the zero-order form is taken in the limit of vanishing shear-stress velocity

ratio. All solutions of this section were computed using the incompressible law of the

wake of Moses 21 which is one of the widely accepted incompressible laws along with that
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of Coles 20. The Moses law was chosen because of its simple, polynomial form.

incompressible law of the wake is

O Oh(_,rl) =2I-I(13) [3 - 2 ]
K

Moses'

where 8 is the boundary layer thickness. The ratio (A/8) and the coefficient II are functions

of [3, and [3 is a function of the streamwise coordinate _,. White 22 gives empirical

expressions for these terms with regard to incompressible, equilibrium turbulent flow as

follows:

A (1 + FI)

5 K:

and

n = + [3)3/4 (4.1)

The law of the wall given in equation (2.8) reduces exactly to the common logarithmic-law

form. The empirical coefficients for the computations of this section were chosen to

conform with the work of Mellor and Gibson32; the law of the wall constants !¢ and B have

the values 0.41 and 4.9, respectively, and the arbitrary function K(x,y) in the outer region

eddy-viscosity model is assumed to be the Clauser31constant and has the value 0.016 after

Mellor and Gibson.

The equilibrium boundary layer problem is solved easily using a shooting

technique. A value for the match point velocity defect f_n is iterated until the far-field

boundary condition on f (equation(2.16)) is satisfied. With the guess of f_a, the match

point location and then the corresponding value of fm are determined. A fourth order

Runge-Kutta integration routine given by White 22 is used to integrate from the match point

across the outer region of the boundary layer.
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The present solutions are compared with the full-equation solutions of Mellor and

Gibson 32. All of these results are for a Reynolds number based on the edge velocity and

displacement thickness (Res*) of 105. The comparison shown in figure 3 includes the

zero-order closed form solution for the most favorable pressure gradient, 13=-0.5. This

solution is shown in Appendix B. The present zero-order numerical solution is seen to be

in complete agreement with the closed form solution and in close agreement with Mellor

and Gibson's full-equation solution. The zero-order solutions provide an indication of the

accuracy of the numerical scheme; the numerical solutions give an early indication of the

accuracy of the zero-order equations.

It should be noted in figure 3 that the present method has resolved a turbulent

boundary layer with only eleven grid points across the boundary layer. It is fair to question

the accuracy of a solution with so few grid points. Figure 4 compares various grids for a

typical value of 13(13= 2) and shows that the eleven point grid solution is in agreement with

the 51 and 101 point solutions. Only the six point solution deviates noticeably from the

fine grid solutions, and this deviation is negligible. On the basis of these observations, the

present solutions were computed with eleven uniformly spaced grid points. The first grid

point is always at the match (patch) point, and the edge value of the normal coordinate is

fixed. This is the adaptive grid approach mentioned in section 3.3. The normal coordinate

reduces to rl for incompressible flow and is plotted as such. During the iteration of the

velocity defect f_, the first grid point Vim shifts with f_ according to equation (3.6). The

uniform grid is recomputed for each value of f_. This grid procedure was used for

convenience rather than necessity as the grid points other than the first could have been

fixed. By eliminating the inner region computations, a grid-point savings on the order of

fifty percent was realized as was the case in references 12, 13, 17, and 18.

Equilibrium velocity defect profiles are presented in figure 5 for several small-[_

cases (13 < 1); and in figure 6, results are presented for large-_ cases (13 > 1). The

41



distinctionbetweensmallandlarge13caseswasmadebyMeUorandGibson32becausethe

standardvelocitydefectvariablesbecomeunboundedas13approachesinfinity andthe

shear-stressvelocity u* approacheszero. Theyalsoobservedtheedgevalueof thenormal

coordinate_ealsoapproacheszeroas13approachesinf'mity. Mellor andGibsonpresented

atransformationto overcomethesedifficulties. Thetransformationeffectivelyreplacesthe

shear-stressvelocity u* with a "pressurevelocity" Upwhich is definedas

Up = _ dx

for incompressible flow.

Up = U* "@"

This quantity is related to u* and 13as

The incompressible coordinates are defined as

S = 13s and N = _

and the velocity defect normalized by the pressure velocity and the transformed shear-stress

velocity ratio are

3F=F'(N) U-Ue f'(_) and X=7"@'-

ON Up @-

respectively. Although it was not necessary to invoke this transformation in order to

achieve the solutions presented in this section, the variables F' and N are used for the

large-13 cases to facilitate comparison with the results of Mellor and Gibson.

It can be seen in these figures that the full-equation form of the present method

compares extremely well with the full-equation solutions of Mellor and Gibson. Even

more important is the excellent agreement of the present zero-order solutions with the full-
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equation solutions. The relative simplicity of the zero-order approach and its excellent

results makes it a desirable alternative to the full-equation approach.

The differences seen in the inner region are caused by the differences between

Mellor and Gibson's inner region eddy-viscosity model and the present combination of the

law of the wall and law of the wake. Mellor and Gibson's solutions approach the law of

the wall in the limit as _qgoes to zero. As will be seen later, Mellor and Gibson's approach

allows a large deviation from the law of the wall and wake in the inner region. This effect

becomes more noticeable with increasingly strong adverse pressure gradients (increasing

13).

The 13= 10 case shown in figure 6 was computed with the Clauser constant

k = 0.0154935 rather than k = 0.016. As demonstrated in'figure 7 for the zero-order

approach, a match point does not exist for 13= 10 with k = 0.016 because the far-field

boundary condition F** ----I cannot be satisfied. This failure to obtain a solution indicates

the problem is overspecified. Figure 7 shows that the value k = 0.0154935 yields a single

value of F_ that satisfies the far-field boundary condition for 13= 10. The maximum value

of 13for which a solution exists for k = 0.016 is approximately 8.6. For values of 13less

than 8.6, there are two values of fth which allow the far-field boundary condition to be

satisfied. The physically correct value is the smaller of the two.

The problem of overspecification is alleviated by allowing the law of the wake to be

computed as part of the solution, as discussed in section 4.2, rather than relying on a fixed

law of the wake as done when computing the solutions shown in this section. The

flexibility of computing the law of the wake allows solutions to be computed without

altering the Clauser constant as was done for the 13= !0 case shown in figure 4.

Results for the shear-stress velocity ratio "r from the present solutions are compared

with the results of Menor and Gibson in figure 8. The two sets of results are in close

agreement but are not identical.
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The present method for evaluating Y differs substantially from that of Mellor and

Gibson 32, Walker et a112, and others in that the value of T is obtained from a patching of

the inner and outer solu .tions at a particular point in the present method whereas a matching

of _e outer limit of the inner solution with the inner limit of the outer solution is used in the

other methods. These methods are not strictly asymptotic in that the inner and outer eddy-

viscosity models are patched at a point analogous to the patch point used in the present

method. The equation Mellor and Gibson used to evaluate Y is very similar to equation

(2.11), the equation used in the present method. The difference is one of application;

equation (2.11) is evaluated at a point a finite distance from the surface in the present

method, while the equation used by Mellor and Gibson is evaluated as close to the surface

as possible (the inner limit of the outer solution). As a result, the values of T obtained by

Mellor and Gibson are consistently smaller than those obtained by the present method.

However, larger values of T can be obtained from the results of Mellor and Gibson by

evaluating their equation at the point where the eddy viscosities are patched.

The inner region velocity profiles of the present method differ from those of Mellor

and Gibson. The differences increase with an increasingly strong adverse pressure

gradient (increasing 13)and are best displayed using inner variable coordinates. Figure 9a

shows the _ = 4 case. It is clear in this figure that, although the inner solutions are

identical near the wall, Mellor and Gibson's solution deviates from the logarithmic behavior

at least an order of magnitude (in y+ units) closer to the wall than in the present method.

This shows the difference between applying an eddy-viscosity model that approaches the

logarithmic form when approaching the wall and enforcing the logarithmic behavior

throughout the inner region. In view of this difference, a comparison with experimental

data seems appropriate. Figure 9b compares the present solution with experimental data

taken from reference 46 for Clauser's 30 second equilibrium flow. The data shown in

figure 9b correspond to profile 2305 in reference 46. For this profile, 13= 7.531 and
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Re_. = 30692.5. Figure 9b shows excellent agreement between the experimental data the

present solution. Given the relatively large value of 13,one would expect less agreement,

especially in the logarithmic region, between a Mellor and Gibson solution and experiment.

The present solution and experiment were also in close agreement for _, where a 0.87

percent difference was found. Present solutions were computed and compared with

experimental data from reference 46 for many values of [3 and good agreement was

generally observed. Table 1 shows several comparisons of the experimentally and

numerically determined shear-stress velocity ratios where the numerical solutions were

computed with the zero-order formulation. The analytic solution from the method of

reference 42 (see Appendix A) is also shown.

Another feature of the present method can be observed quite well in figure 9b.

Notice that the match point of the present solution is well beyond the logarithmic region.

This result demonstrates the advantage gained when including the law of the wake in the

present formulation. For all present solutions, the law of the wake allows the match point

to move beyond the logarithmic region thus extending the usefulness of the analytic inner

region treatment and further reducing the region which must be resolved numerically. As

one would expect, the influence of the law of the wake increased as 13increased.

4.2 Compressible Flow

Solutions for compressible, equilibrium boundary layers have been computed with

the constrained zero-order and full-equation forms of the present method. The full-

equation solutions, however, were generated with the equations of the matching procedure

truncated to second-order. As discussed earlier, the constrained zero-order form is not the

strict asymptotic form taken in the limit of vanishing _' as the term E, which is of order'_Vle,

is not always a small parameter and thus remains in the formulation. The significance of

the term E increases with increasing Me and has been included in all of the present

computations for compressible flow. The term, however, is practically negligible until
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reaching the high supersonic and hypersonic flow regimes. To fulfill the goal of

determining a compressible law of the wake, solutions were computed with an iterative

curve fit technique supplying the coefficient w of the postulated law of the wake given in

equation (2.9). An analytic expression for the coefficient w is determined from these

results.

The compressible equilibrium boundary-layer problem is solved using a shooting

technique in the same fashion as described for incompressible flow. The primary

difference is the determination of the law of the wake as part of the computational

procedure. The specific procedure for determining the coefficient w is discussed later,

suffice it to say that a new value of the coefficient w is determined with each iteration of frh.

The empirical parameters _cand B for the law of the wall and the outer region eddy-

viscosity parameter k retain their values from the incompressible flow cases; they are 0.41,

4.9, and 0.016, respectively. Note that the additional empiricism of the Crocco

relationship is also incorporated in the compressible flow computations.

Both the constrained zero-order and full-equation solutions have been computed
^

over Me, _, and Res* ranges. The solutions shown were computed with 32 uniformly

spaced grid points across the outer region (the fhst point being the match point) in order to

facilitate the law of the wake curve fit procedure. Fewer points could have been used with

the same success if the points had been nonuniformly spaced and clustered near the match

point. Significantly fewer points were needed when the analytic law of the wake was used

(ie once the compressible law of the wake was determined and the curve fit procedure no

longer needed). The inner region solutions shown in the following figures were

determined analytically from the laws of the wall and wake and the Crocco relationship.

Figure 10 compares velocity defect profiles for the constrained zero-order and full-

A

equation formulations over a Mach number range for Res* = 104 and [3 = 0 (the flat-plate

case). It can be seen that the agreement between the formulations is extremely good. Table
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2ashowstheshear-stressvelocityratioy computationsto bein agreementon theorder of

one percent across the Me range. The percent error of the constrained zero-order

formulation for the prediction of y, as compared to the full-equation formulation prediction,

increases as the edge Mach number decreases, but we have previously seen that the

predictions show excellent agreement for incompressible flow.

Figure 11 shows the comparison over a Reynolds number (Res*) range for Me = 3
A

and 13= 0. Again, the velocity defect profiles are nearly identical and, as shown in Table

2b, the shear-stress velocity ratios as computed by the constrained zero-order formulation

show an error on the order of one percent. As the Reynolds number decreases, the percent

error of the constrained zero-order prediction of y increases.

A

Figure 12 shows the comparison for several 13values for Me = 3 and Re_, = 104.
A

The 13= 1 case represents a relatively strong adverse pressure gradient case for supersonic

A

flow. The velocity defect agreement for the _ =I case, although not as good as for the flat

plate case, is still quite good. Table 2c shows the comparison of the shear-stress velocity

ratios computed by the two formulations. The percent error of the constrained zero-order

formulation increases with increasingly strong adverse pressure gradient. Although the

error seen here is larger than for variations of Me and Re_,, the error over this practical
A

range of 13's remains below five percent.

The reduced complexity of the constrained zero-order formulation and the excellent

agreement of the results above justify it as an excellent approximation and alternative to the

full-equation formulation. All subsequent solutions shown in this section are based on the

constrained zero-order formulation.

The determination of the law of the wake coefficient w is an important part of the

present solution procedure. The assumed, or postulated, functional form of the law of the

wake is shown in equation (2.9), where w is the unknown coefficient that is determined by

a least squares curve fit during each iteration of f&. Recall that for the present treatment the
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law of thewakeneedonly bevalid in the innermostpartof theouterregion;thecurvefit to

determinew focuseson thisregionof theboundarylayer. In effect,avaluefor thelaw of

thewakehis determinedat eachpoint in theouterregionas

1 (4.2)

where g is the law of the wall, _, is the current value of the shear-stress velocity ratio, and

f' is determined from the numerical solution. A least squares curve fit of the values of h is

made with the value of the coefficient w as a result. A standard least squares correlation

factor was used to judge the accuracy of the fit. The number of points used for the curve fit

varied from case to case in order to maintain approximately the same correlation factor; that

is, approximately the same level of accuracy with regard to the fit was maintained from case

to case. Note that this procedure can be used for any general postulated law of the wake

with any number of unknown coefficients. More complex laws of the wake which could

be valid over more of the outer region of the boundary layer can be determined.

Figure 13 compares the resulting analytic law of the wake as defined by equation

(2.9) and the determined value of the coefficient w with the numerically computed values of

the law of the wake as determined by equation (4.2) for several Mach numbers. The
A

profiles shown are for Re_5* = 104 and _ = 0. It can be seen that the number of points

accurately fit by the postulated law of the wake decreases as the Mach number increases;

the fit is always accurate near the match point. From this figure, as well as other solutions

not presented, it appears that the y2 dominance of the law of the wake in the inner region

begins to diminish as Me approaches 4.

It can be seen in figure 13 that the law of the wake coefficient w is a function of Me

A

in addition to being dependent on [3. Figure 14a shows the variations of w as a function of

A A

Me and 13for Re_* = 104. It is seen that w increases significantly as 13increases, especially

48



at smallvaluesof Me. As theMachnumberapproaches4, w becomesarelativelysmall
^

number for all 13,and the strong dependence of h on _i2 in the inner part of the boundary

diminishes. Figure 14b shows the variations of the coefficient w as a function of Me and

A

Res* for I3 = 0; the coefficient w is a weak function of Re_,.

An analytic model for the law of the wake coefficient based on the above solutions

can be written as

A

w(Me,_) = w(0,13) _
Pe

A

where w(0,13) is the law of the wake coefficient for incompressible flow and the exponent

A

_ is a function of 13only. An equation for the coefficient w in incompressible flow follows

from section 4.1 as

w(0,13)= n = n
K

(4.3)

where the coefficient I-I is a function of 13. White's 22 equation for rI, as given in equation

(4.1), can be used. Values of equation (4.3) based on equation (4.1) are shown in figure

14a in comparison to the values determined by the curve fit procedure. The present zero-

order solutions have been used to determine a new expression for 1-I. The equation is

rl = o1(0.5 + 13)a2 (4.4)

where a 1 and o 2 are functions of 13,rather than constants as in equation (4.1), and are

defined as

4 40.5+13°1 = ]" + 250 and 1 2 1 13)3/8]0 2 =_-+ _-exp[- _. (0.5 +
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Figure 15a compares equations (4.1) and (4.4) with values of I'l deduced from the

numerically determined values of the coefficient w. Figure 15b compares the

corresponding values of the coefficient w. Equation (4.4) is seen to be an excellent

approximation to the numerical data throughout the range of 13. White never intended

equation (4.1) to be used for high 13cases, so the improvement in this range is not

unexpected. The agreement between equations (4.1) and (4.4) is much better in the low [3

range, but the new expression does fit the numerical data better. The equation for cz was

determined from the solutions shown in figure 14a and is written as

Ot(_) = 2 _ exp[_ 5_2_ + 1 ] (4.5)

The resulting curve is shown in figure 16.

As mentioned previously, significant grid reduction can be realized when using the

analytic law of the wake. Figure 17 shows this grid reduction when the analytic equation is

used rather than the curve fit procedure. The solutions shown for the case where Me = 3,

A

13= 0, and Res* = 104 are virtually identical with only the seven point grid solution

deviating ever so slightly. The computed values of y were also essentially identical as the

difference between the 32-point and the 7-point solutions was less than a quarter of one

percent.
A

Figure 18 presents a series of constrained zero-order solutions over a 13range from

-0.3 to 2 for Res* = 104 and Me = 3. Profiles of the velocity defect, velocity ratio, and the

density ratio are given. Since it is unnecessary to evaluate the inner region solution in order

to compute the outer region solution, only the outer region results are shown. Figure 19

presents a series of fiat plate solutions for a Mach number range from 0 to 4 and for

Refi. = 104. Figures 18 and 19 are presented to document the effect of parameter variations

on the profiles. It is interesting to observe that Me variations have a minimal effect on the

velocity defect profiles. The velocity defect profiles for variations of Res* with fixed Me
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A

and I_, although not presented here, were virtually identical. The fact that the velocity

defect prof'des are relatively insensitive to variations of Me and Res* supports the definition

A A

of 13as the compressible equilibrium flow parameter. The parameter 13effectively

designates the various families of similar solutions for compressible equilibrium flow, at

least under adiabatic wall conditions, in the manner shown by Clauser with his parameter 13

A

for incompressible flow. Note that the present parameter 13reduces to Clauser's 13for

incompressible flow.
A

Figure 20a shows the effect of Me and 13on the shear-stress velocity ratio for

Res* -- 104. It is observed that y increases with increasing Me while decreasing with

A

increasing 13(increasingly strong adverse pressure gradient). For any combination of Me

A

and 13,y increases as the Reynolds number decreases. Figure 20b demonstrates this trend

for flat plate flow. The trend was documented in reference 32 for incompressible flow.
A

Figure 21 shows the effect of Me, 13,and Re,i* on the compressibility parameter to.

Recall that this parameter is the ratio of the velocity thickness to the density-weighted

velocity thickness and appears throughout the present formulation. Figure 21a shows the

Mach number and pressure gradient effects on to for Res* = 104. By definition, to remains

one for all incompressible flows. It is observed that to increases with increasing Me as well

A

as with increasing 13. The effect of the pressure gradient is magnified with increasing Me.
A

Figure 21b shows the effect of Res* on to for Me = 3 and 13= 0. It is observed that to

decreases with increasing Reynolds number. The curves of figure 21a would shift

upwards for Res* less than 104 and downwards for Res* greater than 104 with the

exception of the incompressible flow curve which remains fixed.

Comparisons of the constrained zero-order solutions with experimental data

compiled by Fernholz and Finley 47 have also been made. Figure 22 shows the profile

comparisons for two flat plate cases; each numerical solution was computed with 32 grid

points across the outer region and the curve fit procedure was used to determine the law of
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thewakecoefficient.Theagreementof thevelocitydefectandvelocityratioprofilesis

good,while thedensityratioprofilesarein reasonableagreement.Theuseof theCrocco

relationshipfor thedensityratiomagnifiesthevelocitydifferences,especiallyneartheedge

of theboundarylayer. Themodificationof theoutereddy-viscositymodelby includingthe

intermittencyfactorwouldimprovethecomparisonsbecausethegradientof f' would

increaseastheboundarylayeredgeis approached.An intermittencyfactorcouldbe

incorporatedinto theformulationeasilyby allowingthearbitraryfunctionK in equation

(2.4) to bevariableratherthanusingtheClauserconstantk.

Table3comparesthecomputedandexperimentalshear-stressvelocityratios. The

computedsolutionsarefrom theconstrainedzero-orderformulationandtheexperimental

valuesarebasedon thevaluesof skinfriction asmeasuredby aforcebalance.Theanalytic

solutionsshownweredeterminedwith themethodof reference42. Theagreementfor the

flat platecasesisexcellent; theexperimentalandcomputedvaluesdiffer by nomorethan

twopercent.The5801seriesof experimentaldatarepresentsanonequilibriumflow in

whichdatawastakenin bothfavorableandadversepressuregradients.Theagreement

shownfor thisseriesis not asgoodasseenwith theflat platecases.However,the largest

differenceoccurswith thelargerof thetwo adversepressuregradientcasesandthe

differenceapproximately6.5percent.Theeditorsof reference47castsomedoubton the

accuracyof theexperimentalvaluesdueto alackof upstreamhistoryinformationand

unknownconditionsat theedgeof theboundarylayer. Thevalueof theshear-stress

velocityratio shoulddecreasebetweenprofiles5801/0501and5801/0801asMedecreases,
^

13increases, and Res* increases; these trends, as observed in the present investigation,

indicate a decrease in ), that apparently was not observed experimentally.

4.3 Primitive Variable Application

The ultimate objective of the present investigation is implementation of the present

concepts into existing three-dimensional, Navier-Stokes methods. It should be at this level

52



thatthegreatestrewardswith regardtocomputationalefficiencyandaccuracywill be

realized.Coarsegridsareoftenusednearthewall in theinterestof computational

efficiency;theresultis a lossof accuracy.Accuratenumericalcomputationsnearthewall

requireafine grid,whichresultsin a lossof computationalefficiency. Thenumerical

computationsnearthewall canbereplacedbyanempiricaltreatmentthatdoesnotrelyona

fine grid for accuracy.Theinitial effort towardsthefinal goalisdiscussedin thissection.

Theconceptsdevelopedin thepresentinvestigationhavebeenimplementedinto the

computercodeknownasNASCRIN(_N_umericalAnalysis of Sc..._ramjet Inlets) 48'49. The

code solves the two-dimensional Navier-Stokes equations in conservation law form.

Turbulence is modeled with the zero-equation eddy-viscosity model of Baldwin and

Lomax 10. The zero-equation model of Cebeci and Smith 9 has also been incorporated into

NASCRIN and is used in the present investigation. A numerical coordinate transformation

is used which generates a set of boundary-fitted curvilinear coordinates in order to facilitate

the resolution of flowfields with general geometries. The transformation allows for the

clustering of grid points in regions of high gradients. The transformed governing

equations are solved using an unsplit, explicit, predictor-corrector, finite-difference method

developed by MacCormack 50. This finite-difference method is second-order accurate in

both time and space. The flowfield variables at the inflow boundary are fixed at some

designated initial condition; the variables at the outflow boundary are determined by a first-

order extrapolation. No-slip and adiabatic wall conditions are applied on solid surfaces.

The adiabatic wall condition used in NASCRIN (3T/0y = 0 at y --0) has been replaced by a

more accurate 51 condition (0I-I/Oy = 0 at y --0) in the present investigation.

The present inner region and matching treatments were incorporated into

NASCRIN with relatively minor modifications to the code. The no-slip condition at the

wall was replaced with the condition on the gradient of the velocity _u/_y given in equation

(3.7), and an additional subroutine was incorporated to determine the inner/outer match
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point location,andtheshear-stressvelocity. A generaldescriptionof theuseof this

boundaryconditionwasgivenin section3.3. Thef'mite-differencemethodis used

throughouttheflowfield; only theouterregioneddyviscosityof thezero-equation

turbulencemodel(theCebeci-Smithmodel,for example)is required. In essence,the

resultingnumericalsolutionisnotphysicallyaccuratenearthewall, asit is basedon the

outerregioneddy-viscositymodelandthevelocity gradientboundaryconditionatthewall.

However,thesolutionawayfrom thewall is accurate,wheretheouterregioneddy-

viscositymodelis physicallycorrect.Thephysicallyaccuratesolutionnearthewall is

determinedfrom theempiricalexpressionsusedin theinnerregiontreatmentafterthe

numericalsolutionof theouterregionhasconverged.

Thevelocitygradientboundarycondition(equation(3.7))dependson thevaluethe

shear-stressvelocity u*. Thisparametervariesin thestreamwisedirectionandis updated

duringthecomputationaftereverytwentytime-steps.Thisupdatingschemewaschosen

becauseNASCRIN updatestheeddy-viscosityaftereverytwentytime-steps.Theshear-

stressvelocityis determinedfrom thematchingof theinnerandouterregiontreatments.In

this initial effort, thepresentconceptshavebeenincorporatedin theformof themethodof
A

reference 42 (see Appendix A). The numerical method provides the values of Me, 13, and

Res* needed in the matching subroutine, which is the new subroutine that has been

incorporated into NASCR/N. This subroutine is, in fact, the method of reference 42,

which solves analytically for the value of u* at each streamwise location. Note that the

analytic solution of reference 42 is for the constrained zero-order equation with equilibrium

flow.

The NASCRIN code was used with and without the present modifications.

Solutions with the present modifications are referred to as the slip-velocity solutions.

Solutions computed without modification are referred to as the baseline solutions. The

Cebeci-Smith turbulence model was used with the Clauser constant k = 0.0168; the law of
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thewall constants_candB havethevalues0.41and5.0,respectively,andareusedin the

presentinnerregionandmatchingtreatments.Baselineandslip-velocitysolutionsare

comparedwith experimentaldata.

Thetestcasesconsideredin this initial effortwerefor compressibleflow on fiat

plates.Thetwo casespresentedherearefor Me= 2.578and4.544;testconditionsand

experimentalresultsfor thesetwoflows arefoundin reference47aspartof the5301series

of data. Thesetwo caseswerediscussedpreviouslyin section4.2. Inflow conditions

weredeterminedby theanalyticmethodof reference42 for aspecifiedRe_,;the

Me = 2.578casewasstartedwith Re_,= 2500,andtheMe= 4.544casewasstartedwith

Reso= 400atthe inflow boundary.In eachcase,theexperimentalmeasmementstation,

correspondingto Re_5*= 5295and902for Me= 2.578and4.544,respectively,is nearthe

middleof thecomputationalfield. Thenumericalsolutionwasconsideredto beconverged

whenoneof thefollowing criteriawasmet: (1) themaximumchangein thedensityateach

gridpoint waslessthanor equalto 10-7,or (2) theaveragechangein thedensityover the

entirefield waslessthanor equalto 10-8. Eachcasewascomputedwith fifty-one

uniformly-spacedgrid pointsin thestreamwisedirectionandaconstantAx of 0.0168

meters.

Thegrid reduction,andcorrespondingincreasein computationalefficiency,is

directlyrelatedto thegrid-spacingnormalto thesurface.It wasfoundthatfifty-onegrid

pointsnormalto thesurfacewasadequatetoresolvetheflowfieldsfor eachcasewith the

baselinemethod.Thefn-stgridpoint off of thewall waslocatedaty = 0.000027meters,

whichcorrespondsto y+ valuesof approximately3.9and0.9 for theMe= 2.578and

4.544cases,respectively.Slip-velocitysolutionsweredeterminedwith far fewergrid

pointsnormalto thesurface.To demonstrate,eachcasewascomputedwith twenty-six

points. Thefirst grid point off of thewall is locatedat y = .000142meters,or

approximatelyfive timesfurtheroff of thewall thanwasusedin thebaselinesolutions.
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Thevaluesof y+ wereapproximately21and4.9for theMe = 2.578and4.544cases,

respectively.Thematchpointwaslocatedat y = 0.0021and0.00145meters,with

correspondingy+ valuesof 312and50, for theMe= 2.578and4.544cases,respectively.

Recallthatfrom thematchpointoutward,theslip-velocitysolutionisphysicallyaccurate;

empiricalexpressionsprovidethephysicallyaccuratesolutionbetweenthewall andthe

matchpoint.

Velocityratioanddensityratioprof'desfor thetwocasesareshownin figures23

and24. Thebaselineandslip-velocitysolutionsshowexcellentagreementin theouter

region;theempiricalinnerregionsolution,basedon thematchingprocess,is in excellent

agreementwith theinnerregionsolutionof thebaselinemethod.Theonly significant

deviationfromexperimentoccursneartheedgeof theboundarylayer. Thepredicted

valuesof theshear-stressvelocityratio for Me-- 2.578were0.0430and0.0423for the

baselineandslip-velocitysolutions,respectively;theshear-stressvelocityratiosfor

Me= 4.544were0.0522and0.0532for thebaselineandslip-velocity solutions,

respectively.Thecorrespondingexperimentalvalueswere0.0426and0.0544for Me=

2.578and4.544,respectively.In eachcase,theslip-velocitysolutionprovidesthebetter

prediction.

Thetime-stepis directlyproportionalto theminimumgrid spacingnormalto the

surface.As discussedearlier,theslip-velocityprocedureenablesanincreasein the

minimumspacing(by movingthefirst grid point off of the wail further from the wall).

The effect on the rate of convergence is dramatic. The baseline solution for the Me = 2.578

case required 26250 steps, at an average At of approximately 0.00000008 seconds; the

corresponding slip-velocity solution required only 5900 steps at an average At of

approximately 0.0000004 seconds. The average time-step increases by approximately five

for the slip-velocity solution. The baseline solution for the Me = 4.544 case required

21250 steps, at an average At of approximately 0.00000008 seconds; the corresponding
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slip-velocity solution required only 9000 steps at an average At of approximately

0.0000004 seconds. Again, the average time-step increases by approximately five for the

slip-velocity solution.

Slip-velocity solutions were computed for a variety of grids; the twenty-six point

solutions just discussed should not be taken as the optimum result. In fact, the slip-

velocity solutions were relatively insensitive to the number of grid points normal to the

surface. This statement holds for the resulting parameter profiles as well as the predicted

shear-stress velocity ratio. The effect of reducing the amount of grid clustering (near the

wall) and the number of grid points is to increase the rate of convergence.
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5 Concluding Remarks

Equations governing two-dimensional, nonequilibrium, compressible turbulent

boundary-layer flow have been derived using a defect stream function formulation. This

formulation is of particular interest because it has a constrained zero-order approximation

for which the tangential momentum equation has a first integral. The approximation is

obtained in the limit of vanishing shear-stress velocity to edge velocity ratio and the

constraint exists because the parameter "fMe cannot be neglected for high-speed flows. The

modified Crocco temperature-velocity relationship has been used as an approximation to the

energy equation. Compressible equilibrium flow has been defined with this formulation.

Solutions for incompressible and compressible equilibrium flows have shown the

constrained zero-order form to compare well with the full-equation form and experimental

data.

The lack of popularity of previous defect stream function formulations is probably

due to the difficulty encountered in enforcing the no-slip surface boundary condition. The

present method overcomes this difficulty with a law of the wall/law of the wake

formulation for the inner part of the boundary layer. This inner region treatment is

mathematically patched to the outer region formulation. This formulation eliminates the

need for an inner region eddy-viscosity model. The method also significantly reduces the

grid requirements by eliminating numerical computations in the inner region.

A compressible law of the wake has been developed. The law of tahe wake was

assumed to be proportional to y2 and an iterative curve fitting procedure was used to

determine its coefficient as part of the computation. Solutions generated with this technique

allowed the definition of an analytic expression for the coefficient, and thus a completely

analytic compressible law of the wake. Results show that use of the law of the wake

permits patch point locations beyond the logarithmic region of the boundary layer.
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The method, in its constrained zero-order equilibrium flow form, has been

implemented into an existing two-dimensional Navier-Stokes code. Solutions for

compressible, turbulent boundary-layer flow on flat plates have been computed. As

implemented, solutions were computed using only an outer region eddy-viscosity model

from the surface to the edge of the boundary layer. The no-slip boundary condition for the

velocity at the surface was replaced by a boundary condition on the normal derivative of the

tangential velocity at the surface. Solutions showed a significant increase in computational

efficiency as a result of a coarse grid near the wall and increased time steps. The solutions

showed excellent agreement with experimental data, analytic solutions, and the baseline,

Navier-Stokes computations.

Future investigations should include the incorporation of the nonequilibrium, defect

stream function equations and matching treatments into NASCRIN, in addition to other

Navier-Stokes solvers with various turbulence models. The current defect stream function

treatment should be modified to account for nonadiabatic wall effects. Finally, the

treatment should be extended to and implemented in three dimensions. An initial look at the

extension to three dimensions, for adiabatic wall conditions, is given in reference 52.
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6 Appendices

6.1 Appendix A: Analytic Solution for Compressible Turbulent

Flow

The constrained zero-order analytic solution for compressible, turbulent boundary

layers and resulting skin friction law are discussed in detail in reference 42. This appendix

provides a general outline of the solution.

As discussed in section 2.7, the constrained zero-order equation for equilibrium

flow given in equation (2.21) is essentially linear from incompressible to supersonic flow,

but an additional transformation is necessary to obtain a linear governing equation for

hypersonic flow. The transformation is

_=_ and fl = f P-"_'edr_ =_-el"
P

The transformed governing equation is

Of . 02f Of _f_l.e_f _f
-- = O31V_"_ + (1 +2_) O] - flO) _3g 01]

(6.1)

where f is understood to be fo and

= 213 (Pe_ 1) and flO = ^

Pw (1 + 213 )

This equation is linear if the inequality

e I_1 << 1 (6.2)

is satisfied. This inequality is satisfied for all pressure gradients from incompressible to

supersonic flow and for small pressure gradients in hypersonic flow. An equilibrium form
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of equation (6.1) can be determined in the same manner as discussed in section 2.8 with the

additional condition that the inequality of equation (6.2) is satisfied. The equilibrium form

of equation (6.1) is

okd_+ (1+23)(fl- fi0) df. f_ 1 =0 (6.3)
dry* dfl

where the arbitrary function K is assumed to be the Clauser constant k.

As mentioned in section 2.8, Mellor and Gibson 32 showed that the incompressible

equation is in the form of a confluent hypergeometric equation. Following Mellor and

Gibson, the present independent variable is defined as

1 +2_ (fi- _0) 2
N=

ok 2

The dependent variable for the present problem is defined as

A

f = (1 + f) exp(N)

which has the free-stream boundary condition

A

f**=0

In terms of these variables, equation (6.3) is

N d2_ 1 N" d_ 1(1+ 1 X')_'-
_-'_'+('_'" )d'N'- 1 + 213 -0

Confluent hypergeometric equations are of the form 43

d2 _. ^df ^

N_--_ + (b- N) d'N'" af = 0

The parameters a and b for the present problem are

61



1 1(1 + 1b = _" and a = _. ^)
1+2_

and the solution is

A

f = C M(a,b,N) + D N l'b M(l+a-b,2-b,N)

where C and D are coefficients related to the boundary conditions and M(a,b,N) is

Kummer's function which is given as 43

a N a(a+l) N 2
M(a,b,N)--l+b +b(b+l) 2! +''"

The resulting equation for the velocity profile in the outer region of the compressible,

equilibrium turbulent boundary layer is

d.._.f=. C{ a F(l/2+a) M(a- 1/2,1/2,N) (q- 1I"0)

drl. 4(a- l/2)o_k F(l+a) o3k

M(a,3/2,N) } exp(-N)

where F is the gamma function and the coefficient C is given in reference 42.

The inner region empirical formulation is identical to that previously described. The

matching of the velocity and velocity gradients of the inner and outer region solutions gives

an equation for the match point qm, and finatly an equation for the shear-stress velocity

which is

{ lln flm) + B +6w Pe f12
_: o_ _ Pw _c Pw

+C 9..._e _ 9_w[ a r(l/2+a)

Pm _ Pe 4(a- 1/2)cok F(1 +a)

M(a- 1/2,1/2,Nm)

O]m - _0)
M(a,3/2,Nm) ] exp(-Nm) }-1
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Thisequationis writtenin termsof thesimplifiedform of equation(2.8) for the lawof the

wall. Solutionspresentedhere,however,werecomputedusingthefull vanDriestformof

the law of thewall asgivenin equation(2.8).

6.2 Appendix B: Analytic Solution for Incompressible

Turbulent Flow at 13 =-0.5

A closed-form solution exists for the zero-order equilibrium flow case with regard

to the most favorable pressure gradient (13= -0.5). The zero-order governing equation for

equilibrium flow with 13= -0.5 and K defined as the Clauser constant k is

kf'_j- f0 = 1

Evaluation of equation (4.1) for I-i shows that the law of the wake vanishes for [_ = -0.5.

Therefore, equation (3.2) has the form

f0,m =_lm (f0,m -1)
K

The equation for _lm is

_/1 + 4fg,mk/(f-lm K:)
Tim =

2f0,m/_lm

- 1

The solution is

f0C_m)= k exp[(_m -rl)/_] - 1

k_m

where

_lm=0.5 [lc_._-_._/(lc- ._'-_ )2 -4k ]
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The velocity defect is

U - U e

U Iol

= rO = _ _.._k exp[(VIm-_)/'_-k ]

lCrlm

and the shear-stress velocity is

u 1
m_

Ue [1 In (Re_i*qm) + B + _.__k]

_: g'Flm
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A

Case* Me _ Re6.

1312 0 -0.230 5447.0

1410 0 0 6754.2

1422 0 0 19,321.1

2205 0 1.891 20,230.2

2305 0 7.531 30,692.5

2402 0 3.026 42,832.9

experiment numerical analytical**

.0411 .0407 .0401

.0388 .0386 .0382

.0350 .0351 .0348

.0319 .0301 .0296

.0231 .0229 .0225

.0267 .0265 .0265

* experimental data from reference 46.

** analytical solution from method of reference 42.

Table 1. Shear-stress velocity ratio comparisons with experimental data
and analytical solutions for incompressible flow.
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Me

0

1

2

3

4

5
ii ir

A

Res* _full eqn 7zero-order
% error

0 104 .0367 .0372 1.362

0 104 .0375 .0380 1.333

0 104 .0392 .0397 1.276

0 104 .0409 .0414 1.222

0 104 .0424 .0428 0.943

0 104 .0435 .0439 0.920

a) The effect of Me variations.

,,,,, I i

A

Me l] Res* _'fun eqn Tzero-order
% error

3 0 103 .0511 .0523 2.348

3 0 104 .0409 .0414 1.222

3 0 105 .0341 .0344 0.880

3 0 106 .0293 .0295 0.683

3 0 107 .0256 .0258 0.781

b) The effect of Re8* variations.

A

Me _ Re8* _/full eqn Yzero-order
% error

3 -0.15 104 .0418 .0421 0.718

3 0 104 .0409 .0414 1.222

3 0.5 104 .0386 .0394 2.073

3 1 104 .0367 .0378 2.997

3 2 104 .0339 .0352 3.835

^

c) The effect of 13variations.

Table 2. Shear-stress velocity ratio comparisons of constrained zero-order
and full equation equilibrium solutions.
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r, ,,

^

Case* Me 13 Res* Y Y Y

experiment numerical anal_,tical**

lit*

5501/0101 1.724 0 4719 .0414 .0420

5301/0601 2.578 0 5295 .0426 .0431

5301/1302 4.544 0 902 .0544 .0555

5801/0101 1.947 -0.155 7949 .0397 .0412

5801/0501 1.918 .2175 8596 .0395 .0391

5801/0801 1.873 .7265 9024 .0395 .0370

experimental data from reference 47.

Table 3.

.0414

.0424

.0533

.0407

.0384

.0360

analytical solution from the method of reference 42.

Shear-stress velocity ratio comparisons with experimental data
and analytical solutions for compressible flow.
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Figure 14. Behavior of the the law of the wake coefficient.
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Figure 24. Baseline and slip-velocity Navier-Stokes solutions for Me = 4.544.
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